Hermite wavelets collocation method for solving a fredholm integro-differential equation with fractional Caputo-Fabrizio derivative
نویسندگان
چکیده
In this paper, we investigate the numerical study of nonlinear Fredholm integro-differential equation with fractional Caputo-Fabrizio derivative. We use Hermite wavelets and collocation technique to approximate exact solution by reducing a algebraic system. Furthermore, apply method on certain examples check its accuracy validity.
منابع مشابه
Spectral-collocation Method for Fractional Fredholm Integro-differential Equations
We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of FredholmVolterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L∞ norm and weighted L2-norm. The numerical examp...
متن کاملDiscrete Collocation Method for Solving Fredholm–Volterra Integro–Differential Equations
In this article we use discrete collocation method for solving Fredholm–Volterra integro– differential equations, because these kinds of integral equations are used in applied sciences and engineering such as models of epidemic diffusion, population dynamics, reaction–diffusion in small cells. Also the above integral equations with convolution kernel will be solved by discrete collocation metho...
متن کاملAPPLICATION OF HAAR WAVELETS IN SOLVING NONLINEAR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
A novel and eective method based on Haar wavelets and Block Pulse Functions(BPFs) is proposed to solve nonlinear Fredholm integro-dierential equations of fractional order.The operational matrix of Haar wavelets via BPFs is derived and together with Haar waveletoperational matrix of fractional integration are used to transform the mentioned equation to asystem of algebraic equations. Our new met...
متن کاملWavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel
This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel. First, a collocation method based on Haar wavelets (HW), Legendre wavelet (LW), Chebyshev wavelets (CHW), second kind Chebyshev wavelets (SKCHW), Cos and Sin wavelets (CASW) and BPFs are presented f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones
سال: 2023
ISSN: ['0716-0917', '0717-6279']
DOI: https://doi.org/10.22199/issn.0717-6279-5542